Mooring Line Damping Estimation for a Floating Wind Turbine
نویسندگان
چکیده
The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.
منابع مشابه
Investigating the Behavior of the Mooring System for a Conceptual Design of a Spar Floating Wind Turbine under Survival Conditions
In this paper, selecting of an appropriate mooring system for spar platform of a wind turbine consisting of chain–cable–chain is investigated based on a meta-heuristic method. The purpose is to investigate the hydrodynamic behavior of the structure and the mooring system in a normal and damaged conditions. ANSYS-AQWA software is applied to hydrodynamics analysis and the numerical results were f...
متن کاملThe Effect of Additional Mooring Chains on the Motion Performance of a Floating Wind Turbine with a Tension Leg Platform
In this study, two types of floating offshore wind turbine (FOWT) systems were proposed: a traditional tension leg platform (TLP) type and a new TLP type with additional mooring chains. They were both based on the National Renewable Energy Laboratory 5 MW offshore wind turbine model. Taking the coupled effect of dynamic response of the top wind turbine, tower support structure and lower mooring...
متن کاملFloating Offshore Wind Turbines: Tension Leg Platform and Taught Leg Buoy Concepts Suppoting 3-5 Mw Wind Turbines
The development is presented of two low weight, motion resistant stiff floating wind turbine concepts for deployment in water depths ranging from 30 to several hundred meters in seastates with wave heights up to 30 meters supporting 3-5 MW onshore wind turbines. The floating wind turbines may be fully assembled at a coastal facility in their upright position prior to being towed to the offshore...
متن کاملFloating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment
Wind is the fastest growing renewable energy source, increasing at an annual rate of 25% with a worldwide installed capacity of 74 GW in 2007. The vast majority of wind power is generated from onshore wind farms. Their growth is however limited by the lack of inexpensive land near major population centers and the visual pollution caused by large wind turbines. Wind energy generated from offshor...
متن کاملشبیهسازی آیروهیدروالاستیک توربین بادی با سکوی کرجیوار
In this paper a multi-body system of barge type wind turbine under stochastic wave and wind has been modeled within MSC ADAMS. For wind loading, the stochastic turbulent wind data have been extracted using TurbSim software.Also, the AeroDyn module has been used for calculating lift and drag forces on the blades of turbine.. The hydrodynamic loads have been calculated using HydroDyn module withi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014